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Abstract 

 

The evolution of mitochondrial protein import and the systems that mediate it marks the 

boundary between the endosymbiotic ancestor of mitochondria and a true organelle that 

is under the control of the nucleus. Protein import has been studied in great detail in 

Saccharomyces cerevisiae. More recently it has also been extensively investigated in the 

parasitic protozoan Trypanosoma brucei making it arguably the second best studied 

system. Here we provide a comparative analysis of the protein import complexes of yeast 

and trypanosomes. Together with data from other systems, this allows to reconstruct the 

ancestral features of import complexes that were present in the last eukaryotic common 

ancestor (LECA) and to identify which subunits were added later in evolution. We discuss 

how these data can be translated into plausible scenarios providing insights into the 

evolution of i) outer membrane protein import receptors, ii) proteins involved in 

biogenesis of a-helically anchored outer membrane proteins, and iii) of the 

intermembrane space import and assembly system. Finally, we show that the unusual 

presequence-associated import motor of trypanosomes suggests a scenario of how the 

two ancestral inner membrane protein translocases present in LECA evolved into the 

single bifunctional one found in extant trypanosomes. 

 

Keywords: LECA; membrane translocation; parasite; protein translocases; TIM complex; 

TOM complex. 
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Introduction 

All eukaryotes have or once had mitochondria which makes them one of the defining 

features of eukaryotes. Mitochondria provide many important services to the cell, including 

oxidative phosphorylation, synthesis of FeS-clusters for both mitochondrial and non-

mitochondrial proteins, synthesis of certain lipids and many more (Friedman et al., 2014; 

Nunnari et al., 2012). To achieve all this the organelles have to be under the control of the 

nucleus and firmly integrated into the physiology of the complex eukaryotic cell. - However, 

it was not always like that. The origin of mitochondria can be traced back approximately 1.7 

billion years ago to a free living a-proteobacterium that was taken up by an archaeal host 

cell and became an endosymbiont (Archibald, 2015; Dacks et al., 2016; Roger et al., 2017). 

This on its own is not such an unusual event and we know of many modern examples of 

such endosymbiotic systems (Lopez-Garcia et al., 2017). However, what happened next was 

indeed very unusual and - in the case of the mitochondrion - occurred only once in 

evolution: the endosymbiont converted into an organelle. Which selective forces shaped 

this process and how exactly this organellogenesis took place is still being debated (Lane, 

2014; Poole et al., 2014; Roger et al., 2017). What we do know is that more and more of 

the genome of the endosymbiont was either lost or transferred to the host cell genome. At 

some point this became critical and the only way for the endosymbiont to survive was to 

convert into an organelle. A key event in this process was the evolution of a protein import 

system that allowed the nascent organelle to make use of proteins whose genes were 

previously transferred to the host cell genome (Dolezal et al., 2006; Fukasawa et al., 2017; 

Harsman et al., 2017). Thus, the protein import system defines the boundary between an 

endosymbiont and a true organelle that is under control of the host cell genome. Today 

more than 95% of all mitochondrial proteins derive from nuclear genes and need to be 
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imported from the cytosol. Thus, mitochondrial protein import is a key process for 

mitochondrial physiology as well as for understanding the organelle’s evolutionary history. 

It is therefore not surprising that mitochondrial protein import has been studied in great 

detail resulting in a wealth of knowledge about the machineries and the mechanisms that 

mediate it (Grevel et al., 2019; Hansen et al., 2019; Opalinska et al., 2015; Pfanner et al., 

2019; Schulz et al., 2015; Wasilewski et al., 2017). But there is a problem, with the 

exception of plants, essentially all experimental studies on the mitochondrial protein import 

have been done in yeast and mammals. Eukaryotes are very diverse and can be divided into 

at least five major phylogenetic taxons, termed supergroups(Burki, 2014; Burki et al., 

2019; Dacks et al., 2008). However, fungi (which includes yeast) and metazoans (which 

includes mammals) belong to the same eukaryotic supergroup, the opisthokonts.  

For a deep understanding of the mitochondrial protein import process and how it evolved 

we need to know which of its features are similar and which ones are different in unrelated 

eukaryotes. Moreover, we need to investigate whether the observed similarities are due to 

common descent or due to the same functional constraints that may have resulted in 

convergent evolution. In recent years the mitochondrial protein import systems of the 

parasitic protozoan Trypanosoma brucei, a member of the eukaryotic supergroup of the 

excavates, has been experimentally studied in quite some details making it arguably the 

best characterized such system outside the opisthokonts (Eckers et al., 2012; Harsman et 

al., 2017; Hauser et al., 1996; Mani et al., 2016; Schneider, 2018; Schneider et al., 2008).  

In this review I will introduce the mitochondrial protein import system of T. brucei, with an 

emphasis on the most recent findings, and contrast it to its counterpart in yeast. 

Furthermore, I will discuss the insights such a comparative analysis can provide into the 

evolution of the mitochondrial protein import systems. 
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Mitochondrial protein import in yeast 

Mitochondrial protein import has best been analyzed in the Saccharomyces cerevisiae which 

therefore serves as a golden standard with which all other systems can be compared. There 

are a number of excellent reviews discussing the various protein import pathways (Hansen 

et al., 2019; Opalinska et al., 2015; Pfanner et al., 2019; Schulz et al., 2015; Wasilewski et 

al., 2017). Thus, in the following I will only provide a condensed overview focusing on the 

protein complexes that mediate import.  

 

Outer membrane 

In the mitochondrial outer membrane (OM) we find three complexes that have distinct 

functions in protein import (Fig. 1) (Dukanovic et al., 2011). The most important one across 

which essentially all mitochondrial proteins are translocated is the translocase of the OM 

(TOM) whose structure has recently been solved (Araiso et al., 2019; Bausewein et al., 

2017; Tucker et al., 2019). It consists of 7 subunits. The b-barrel protein Tom40 forms the 

protein import pore. It is associated with the import receptors Tom20, which has a 

preference for presequence-containing precursor proteins as well as β-barrel proteins, and 

Tom70, which mainly binds hydrophobic membrane proteins delivered by the cytosolic 

chaperone heat shock protein 70 (cHsp70). The substrate specificity of the two receptors is 

not absolute but overlapping explaining why their individual deletion is not lethal. Tom22 

acts as a secondary receptor that transfers the substrates to Tom40 and is essential for the 

stability of the whole complex. The TOM complex furthermore contains Tom5, Tom6 and 

Tom7 which regulate its stability and assembly (Perry et al., 2008).  
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The sorting and assembly machinery (SAM) is the most highly conserved import machinery. 

Its function is to insert b-barrel proteins into the OM after they have been translocated to 

the intermembrane space (IMS) by the TOM complex. The core component of SAM is the b-

barrel protein SAM50, which is a homologue of BamA the b-barrel protein insertase in gram 

negative bacteria (Ulrich et al., 2015). 

Finally, the mitochondrial OM harbors the MIM complex consisting of two small proteins 

mitochondrial import 1 (Mim1) and Mim2. It facilitates the insertion into the OM and/or 

possibly other steps in the biogenesis of a-helically anchored proteins (Dimmer et al., 2012; 

Stefan Dimmer et al., 2010). Some of its substrates are subunits of the TOM complex 

indicating that the MIM complex is essential for the biogenesis of the main OM translocase. 

The exact mechanism by which the MIM complex exerts its function is still unknown. 

 

Intermembrane space 

There are two protein complexes in the IMS that are required for import of different subsets 

of proteins (Fig. 1). A collection of small Tim proteins form two distinct hexameric 

complexes, a soluble one and a membrane-associated one that interacts with the TIM22 

complex (see below). They function as chaperones preventing the aggregation of b-barrel or 

hydrophobic mitochondrial carrier proteins in the IMS and handover their substrates to the 

corresponding translocation machinery, the SAM or the TIM22 complexes respectively 

(Koehler et al., 1998; Sirrenberg et al., 1998; Vial et al., 2002).  

The mitochondrial IMS import and assembly protein (Mia40), an integral inner membrane 

(IM) oxidoreductase exposed to the IMS, and the soluble IMS-localized sulfhydryl reductase 

Erv1 mediate import of small IMS proteins that have typical cysteine motifs. Mia40 and Erv1 

form a disulfide relay that transfers disulfide bonds first from Erv1 to Mia40 and then to the 
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substrate. This stabilizes the substrate and prevents its back translocation to the cytosol. 

Conversely, the electrons liberated by the oxidation of the substrate are first transferred to 

Mia40 and subsequently to Erv1 before they are fed into the respiratory chain (Backes et al., 

2017; Herrmann et al., 2012; Mordas et al., 2015). 

 

Inner membrane 

The IM contains two main protein translocases with distinct substrate specificities termed 

translocase of the IM 22 and 23 (TIM22 and TIM23 complex), respectively (Fig. 1). The 

TIM22 complex consists of four subunits, of which Tim22 forms the protein conducting 

pore, and is associated with the IMS-localized small TIM chaperone complex. It mediates the 

insertion of integral IM proteins with multiple transmembrane domains, such as 

mitochondrial carrier proteins. The TIM23 complex consists of five subunits, of which Tim23 

and Tim17 form the protein-conducting pore and Tim50 acts as a presequence receptor 

(Dudek et al., 2013; Rehling et al., 2004; Schulz et al., 2015). While the TIM23 and TIM22 

complexes do not share any subunits Tim23, Tim22 and Tim17 belong to the same protein 

family. The TIM23 complex translocates or inserts presequence-containing precursor 

proteins, which make up to 70% of all mitochondrial proteins, across or into the IM. To that 

end it is associated, on the matrix side, with the presequence translocase-associated motor 

(PAM), that consists of mitochondrial heat shock protein 70 (mHsp70), Mge1, the two 

essential J-domain-containing chaperones Pam16 and Pam18, as well as Tim44 that links the 

PAM module to the TIM23 complex (Craig, 2018; Marom et al., 2011; Schulz et al., 2015). 

The TIM23 complex together with the PAM allows ATP-dependent translocation of 

precursors proteins across the IM. After translocation the presequence is processed by the 
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heterodimeric matrix protease and the imported protein is refolded by the mHsp70 and 

Hsp60 chaperones. 

 

Mitochondrial protein import in trypanosomes 

It has been assumed that the mitochondrial protein import systems would be highly 

conserved in all eukaryotes. However, studies of mitochondrial protein import in the 

experimentally highly accessible parasitic protozoan Trypanosoma brucei have begun to 

show that this is not necessarily the case (Harsman et al., 2017; Mani et al., 2016; 

Schneider, 2018). In the following chapters I will introduce the protein complexes that 

mediate mitochondrial protein import in trypanosomes focusing on the differences they 

show to the ones in yeast (Fig. 1). Moreover, I will discuss what these differences may tell us 

about the evolution of mitochondrial protein import in general. 

 

Outer membrane: ATOM complex and protein import 

The trypanosomal analogue of the TOM complex has been termed atypical translocase of 

the OM (ATOM). As its yeast counterpart it consists of seven subunits, all of which are 

essential for mitochondrial protein import (Desy et al., 2016; Mani et al., 2015; Pusnik et 

al., 2011). ATOM40 is the protein conducting pore and a remote orthologue of Tom40 

(Harsman et al., 2012; Zarsky et al., 2012). ATOM14 is a highly diverged orthologue of 

Tom22. It has a very short functionally dispensable cytosolic domain lacking the acidic 

clusters found in yeast Tom22. Its IMS domain in contrast is twice as long as the one in yeast 

Tom22. It is essential for function of ATOM14 and was shown to bind precursor proteins in 

vitro (Mani et al., 2016).  
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The other five subunits ATOM69, ATOM46, ATOM19, ATOM12 and ATOM11 are specific for 

kinetoplastids. The cytosolic domains of ATOM69 and ATOM46 were shown to bind a 

number of different precursor proteins, with quantitative rather than qualitative 

differences. This suggests that these two ATOM subunits, similar to yeast Tom70 and 

Tom20, function as import receptors which have distinct but overlapping substrate 

preferences. ATOM69 is superficially similar to Tom70. Both share the same molecular 

weight and multiple TPR-like motifs. However, ATOM69 in addition has an N-terminal 

CS/Hsp20-like domain, which in other proteins was shown to bind Hsp90. Moreover, in 

contrast to yeast Tom70, ATOM69 is tail-anchored. ATOM46 has an N-terminal membrane 

anchor and armadillo (ARM) repeat domains that likely function as a protein–protein 

interaction module. Thus, except for the TPR domains in ATOM69, the two trypanosomal 

import receptors do not share any sequence similarity to the two receptors of yeast 

indicating that they evolved independently (Mani et al., 2015).  

Interestingly, the import receptors in plant mitochondria are different to both the yeast and 

the trypanosomal receptors. One of them, plant Tom20, looks very similar to yeast Tom20, 

both have a single transmembrane domain and a TPR repeat in their cytosolic domains. 

However, the tail-anchored plant Tom20 is coded in reverse when compared to its yeast 

counterpart which is a signal-anchored protein (Lister et al., 2006; Perry et al., 2006). 

Some plants furthermore have a second import receptor, termed OM64, that is not tightly 

associated with the TOM complex but required for import of at least a few mitochondrial 

proteins. The cytosolic segment of OM64 includes an amidase domain that is flanked by 

three C-terminal TPR domains (Chew et al., 2004; Lister et al., 2007). Thus, the two plant 

receptors Tom20 and Om64 appear to be functional analogues but are neither orthologous 

to yeast Tom20 and Tom70 nor to the trypanosomal ATOM46 and ATOM69. The three 
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receptor pairs therefore present examples of convergent evolution over large phylogenetic 

distances (Mani et al., 2016). 

In summary these results suggest the following evolutionary scenario for the evolution of 

the TOM complex and its protein import receptors (Fig 2). The last eukaryotic common 

ancestor (LECA) likely had a simplified import system consisting of ancestral forms of 

Tom40, Tom22 and Tom7 (Fig. 2A).  

During evolution Tom7 was lost in most excavates, including all kinetoplastids (Fukasawa et 

al., 2017). Moreover, comparing the Tom22 orthologues in different eukaryotic 

supergroups indicates, that its ancestral form was lacking the presequence-binding cytosolic 

domain found in opisthokont Tom22 and therefore may have looked more similar to T. 

brucei ATOM14 and the plant Tom22 orthologue Tom9 (Maćasev et al., 2004). In line with 

this is was shown that the cytosolic domain of ATOM14 is dispensable (Mani et al., 2016) 

and that the one of Tom9 does not bind presequences (Rimmer et al., 2011). The ancestral 

Tom22 could therefore not have served as a primoridal import receptor. Instead the import 

substrates were likely directly recognized by Tom40 which contains conserved acidic and 

hydrophobic patches that line the import channel and that likely were already present in 

LECA (Fukasawa et al., 2017).   

After a first divergence of eukaryotes two primary import receptors with substrate 

preferences for either presequence-containing or hydrophobic proteins evolved 

independently at least three times: in opisthokonts, plants and kinetoplastids. Interestingly, 

recent studies suggest that ATOM46 and ATOM69 homologues are present in Euglena 

(Ebenezer et al., 2019) (J. Lukes, University of South Bohemia in České Budějovice, personal 

communication). Moreover, an ATOM69-like receptor has been found in hydrogenosomes 

of Trichomonas (Makki et al., 2019). This suggests that the trypanosomal-type receptors are 
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not linked to a parasitic life-style and might be more widespread in the Excavate supergroup 

than initially thought. In summary, the receptor pairs with distinct substrates preferences 

appeared relatively late in evolution possibly because an increased number of proteins 

needed to be imported or because a higher specificity of targeting was required at this 

stage. It will be interesting to see whether there are even more examples of distinct protein 

import receptor pairs in other eukaryotic supergroups. 

 

Outer membrane: ATOM complex and tRNA import 

There is another unusual feature of the trypanosomal ATOM complex, it does not only 

import proteins but also cytosolic tRNAs. – In contrast to most other eukaryotes the 

trypanosomal mitochondrial genome does not encode any tRNAs. This means that all 

organellar tRNAs have to be imported from the cytosol. The process is not restricted to 

trypanosomes but import of a subset of cytosolic tRNAs into mitochondria has also been 

found in plants, some fungi and a number of protists (Alfonzo et al., 2009; Salinas et al., 

2008; Schneider, 2011). Recently, it has been shown that plugging the ATOM40 import 

channel with a precursor protein inhibits both protein and tRNA import. Thus, ATOM40 

serves as a pore for the translocation of both proteins and tRNAs. Interestingly however, it 

was shown that protein import could be uncoupled from tRNA translocation, since 

simultaneous ablation ATOM46 and ATOM69, the two protein import receptors, while 

completely abolishing protein import did not affect tRNA import (Niemann et al., 2017). 

Thus, despite the fact that proteins and tRNAs use the same import pore, protein and tRNA 

import are independent processes in trypanosomes. - S. cerevisiae imports a small fraction 

of a single cytosolic tRNALys isoacceptor into mitochondria even though the yeast 

mitochondrial genome encodes all tRNAs required for organellar translation. However, in 
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contrast to trypanosomes, it was suggested that the yeast tRNALys is co-imported in complex 

with the precursor of a mitochondrial aminoacyl-tRNA synthetase (Tarassov et al., 1995; 

Tarassov et al., 1995). Thus, while both the yeast TOM and the trypanosomal ATOM 

complex are able to translocate tRNAs they do it by a different mechanism. 

 

Outer membrane: SAM complex 

Sam50, the pore-forming subunit of the SAM complex, was commandeered from the 

bacterial endosymbiont that gave raise to mitochondria. In line with that we find a highly 

conserved Sam50 orthologue in T. brucei that as its yeast counterpart mediates insertion of 

b-barrel proteins into the OM (Sharma et al., 2010). In yeast Sam50 is associated on the 

cytosolic side with the peripheral OM proteins Sam35 and Sam37. While we do find an 

orthologue of Sam35 in trypanosomes there is no evidence that it is associated with the 

SAM complex (Niemann et al., 2013). 

 

Outer membrane: pATOM36 

Peripheral ATOM36 (pATOM36) is an abundant kinetoplastid-specific protein with probably 

two transmembrane domains whose N- and C-termini face the cytosol. RNAi-mediated 

ablation of pATOM36 essentially exclusively affects mitochondrial OM proteins that have 

classical a-helical transmembrane domains including six subunits of the ATOM complex. 

pATOM36 appears to facilitate membrane insertion for some substrates whereas for others 

it seems to mediate their assembly into protein complexes (Bruggisser et al., 2017; Käser et 

al., 2017; Pusnik et al., 2012). Thus, the function of pATOM36 is reminiscent of the MIM 

complex in yeast. However, pATOM36 has a different molecular weight and topology, and 

does not show any sequence similarity to either of the two subunits of the MIM complex.  
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Deletion of the two subunits, Mim1 and Mim2, of the MIM complex in yeast strongly 

inhibits growth of the cells and assembly of the TOM complex. Interestingly, expression of 

pATOM36 in the MIM complex deletion strain could essentially completely complement 

these phenotypes. Furthermore, the converse experiment also worked. Thus, expressing 

Mim1 and Mim2 in the induced pATOM36 RNAi cell line rescued the ATOM assembly defect 

observed in this cell line (Vitali et al., 2018). These results demonstrate that pATOM36 and 

the MIM complex are functional analogues and therefore represents another example of 

convergent evolution over large phylogenetic distances (Tokatlidis, 2018). The results 

furthermore suggest that neither pATOM36 nor Mim1/Mim2 need any trypanosome- or 

yeast-specific partner proteins to exert their function. Since the mechanism by which the 

MIM complex or pATOM36 promotes OM protein biogenesis is not known in detail, new 

results obtained in either of the two systems will be of immediate relevance for the other 

system.  

The MIM complex is restricted to the fungi and pATOM36 has only been found in 

kinetoplastids, although a recent study showed its presence in E. gracilis suggesting it might 

be more widely distributed (Ebenezer et al., 2019) (M. Hammond and J. Lukes, University of 

South Bohemia in České Budějovice, personal communication). We don’t know which 

membrane factors mediate the biogenesis of a-helically anchored OM proteins in other 

systems such as mammals or plants. However, we expect that insertion of OM proteins is a 

protein-assisted process in these systems as well. The most parsimonious interpretation of 

the available data suggests the following evolutionary model (Fig. 3). The primordial TOM 

complex in LECA might not have required a dedicated OM protein biogenesis factors (Fig. 

3A). However, such a system became a requirement later in evolution possibly because 

more and more a-helically anchored OM proteins evolved, including the two receptor pairs 
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of the different TOM complexes. Thus, completely unrelated but functionally essentially 

identical systems evolved in the ancestors of all fungi and all Euglenozoa (Fig. 3B and C). 

Again it will be interesting to see which factors mediate OM biogenesis in mammals and 

other eukaryotic taxons (Fig. 3D). Complementation of the yeast MIM complex deletion 

strain with cDNA libraries of the corresponding organisms may be a way to identify these 

postulated factors.   

Surprisingly pATOM36, unlike the MIM complex in yeast, has a second function that is 

unrelated to mitochondrial protein import. It was shown that pATOM36 is not only localized 

all over the mitochondrial surface but concentrated at the tripartite attachment complex 

(TAC), the kinetoplastid-specific structure that links the single unit mitochondrial genome 

with the basal body of the flagellum. The function of the TAC is to couple the segregation of 

the replicated mitochondrial genomes to the segregation of the old and the new flagellum 

in dividing cells (Schneider et al., 2018). Thus RNAi-mediated depletion of pATOM36 not 

only affected biogenesis of OM proteins but also resulted in a loss of the mitochondrial 

genome and an increase in the distance between the basal body and the mitochondrial OM 

indicating that it is an essential subunit of the TAC (Käser et al., 2016). pATOM36 therefore 

integrates mitochondrial protein import and mitochondrial DNA inheritance.   

  

Intermembrane space: small TIMs 

The small TIM proteins are a highly conserved protein family found in all eukaryotes. This 

includes trypanosomes which contains six different small TIM proteins (Gentle et al., 2007; 

Harsman et al., 2017). However, sequence comparisons do not allow a one to one 

assignment of the trypanosomal Tims to their counterparts in yeast and human. The 

structure of one trypanosomal TIM, TbTim12, is unusual since it has an incomplete Cx3C 
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small Tim signature motif and thus can only form a single intramolecular disulfide bond 

(Wenger et al., 2017). 

Ablation small Tim proteins as expected affects import of TbTim17, an integral membrane 

subunits of the TIM complex (Basu et al., 2013; Eckers et al., 2013; Smith et al., 2018; 

Wenger et al., 2017). Tim13 however is an exception, it does not appear to be required for 

import of TbTim17 but rather plays are role in the assembly and/or maintenance of the TIM 

complex. 

Trypanosomal small Tims are present in two complexes. One is associated with the single 

bifunctional trypanosomal TIM complex (see below), the other one is soluble in the IMS (Fig. 

1). The latter has a molecular weight of approximately 70 kDa consistent with the hexameric 

assemblies of small Tims found in yeast and humans. However, pulldown experiments with 

tagged variants of specific small TIMs always recovers all six small Tims of 

trypanosomes(Wenger et al., 2017). This suggests that, unlike in yeast and humans, the 

postulated hexamers in trypanosomes do not consist of specific alternating pairs of small 

Tim proteins but are composed of all six small TIM proteins. 

 

Intermembrane space: MIA system 

Only an incomplete MIA system is present in T. brucei. While the sulfhydryl oxidase Erv1 has 

been found an orthologue of the Mia40 oxidoreductase is absent (Basu et al., 2013; Eckers 

et al., 2013). RNAi-mediated ablation of Erv1 reduces the abundance of IMS proteins, such 

as small Tims, or other proteins rich in cysteines that are arranged in either twin-Cx3C or -

Cx9C motifs found in many IMS proteins of yeast (Peikert et al., 2017). Thus, Erv1 as in 

yeast mediates import of IMS proteins in T. brucei. This raises the question of how the 

disulfide relay can function in the absence of a Mia40? Two different scenarios have been 
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proposed to explain this. It could be that the requirement of Mia40 is bypassed and that the 

job is done by Erv1 alone. In support of this, it has been shown that in Arabidopsis which has 

both Erv1 and Mia40, but in which Mia40 is not essential (Carrie et al., 2010), Erv1 can 

directly transfer disulfide bonds to import substrates at least to a limited extent (Peleh et 

al., 2017). Alternatively, there might be another unrelated protein that functions as a 

Mia40 analogue. Recent studies of the unusual trypanosomal mitochondrial contact site and 

cristae organizing system (MICOS), that mediates the formation cristae in the IM, supports 

the later scenario. Mic20 a subunit of the trypanosomal MICOS is a thioredoxin-like protein, 

whose ablation to a large part phenocopies the effects seen after ablation of Erv1, 

suggesting it may replace the lacking Mia40 (Eichenberger et al., 2019; Kaurov et al., 

2018). Should this be the case part of the trypanosomal IMS disulfide relay system would 

be similar to disulfide bond formation in the bacterial periplasm, which is catalyzed by the 

thioredoxin-like protein DsbA (Lu et al., 2014). However, the evidence that Mic20 functions 

a Mia40 analogue in trypanosomes is still indirect and further evidence is required to 

exclude alternative explanations.  

Based on the lack of Mia40 in some species and the non-essential nature of the protein in 

Arabidopsis it has been proposed that the mitochondrial IMS disulfide relay may have 

evolved in a stepwise fashion, from an ancestral system requiring Erv1 alone to the more 

complex one composed of Erv1 and Mia40 found in most extant eukaryotes (Carrie et al., 

2017; Peleh et al., 2017). However, this model is inconsistent with the wide phylogenetic 

distribution of Mia40, which is found in a number of different supergroups (opisthokonts, 

amoebozoans, Archaeplastida and in a few excavates) indicating that the protein was 

already present in LECA (Backes et al., 2019; Munoz-Gomez et al., 2015). Thus, the 

ancestral system likely contained both Erv1 and Mia40 (Fig. 4A). It then appears that in the 
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ancestor of the kinetoplastids Mia40 was replaced by the thioredoxin-like protein Mic20 

(Fig. 4B), whereas in plants Mia40 is still present but at least in Arabidopsis dispensable. We 

have no information how the members of the SAR group (stramenopiles, alveolates, and 

rhizarians), which also lack a Mia40, compensate for this absence but the plant example 

shows that a system solely based on Erv1 would in principle feasible (Fig. 4D). Moreover, it 

is likely that at an intermediate stage, before Mia40 was lost, it became dispensable as is 

observed in Arabidopsis.  

 

Inner membrane: a single unique TIM complex 

Rather than having a TIM23 and a TIM22 complex each specialized for different substrates 

such as yeast and mammals, trypanosomes have a single TIM complex only that imports or 

inserts all imported IM or matrix proteins (Fig. 1). The evidence for this comes from tagged 

substrates, that in yeast would be typical for either the TIM23 (presequence-containing 

proteins) or the TIM22 complex (carrier proteins), that are stuck in their respective import 

machineries. Pulldown of both of these import intermediates recovers the same four 

integral membrane proteins. Only two rhomboid-like proteins, TimRhom I and TimRhom II, 

were specifically associated with the presequence substrate (Fig .1). Furthermore, the 

pulldown also recovered all six small TIM proteins. Thus, trypanosomes have a single 

bifunctional TIM complex that is tightly associated with small TIM proteins and that with 

minor compositional variations mediates import of both presequence-containing and 

mitochondrial carrier proteins (Harsman et al., 2016).  

The only subunit of the trypanosomal TIM complex that shows homology to any subunit of 

the yeast TIM23 and TIM22 complexes is TbTim17 (Gentle et al., 2007; Singha et al., 2008), 

which despite its name is an orthologue of yeast Tim22, the core subunit of the TIM22 
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complex (Fukasawa et al., 2017; Pyrihova et al., 2018; Zarsky et al., 2016). Interestingly, 

ablation of TbTim17 not only abolished protein but also mitochondrial tRNA import 

(Tschopp et al., 2011), suggesting that - as for the OM membrane – subunits of the protein 

translocase are involved in the translocation of tRNAs across the IM. The remaining TIM 

subunits of trypanosomes are Tim42 (Harsman et al., 2016), Tim62 and ACAD, an 

orthologue of a medium chain length acyl-CoA dehydrogenase (Harsman et al., 2016; 

Singha et al., 2015; Singha et al., 2012). Except for Tim42 which has a single predicted 

transmembrane domain all trypanosomal TIM subunits have multiple transmembrane 

regions. A previous study identified a putative trypanosomal orthologue of yeast Tim50, a 

subunit of the TIM23 complex (Duncan et al., 2013). However, the significance of the 

observed similarity was disputed in two recent reviews, since the transmembrane domain of 

the protein would disrupt the conserved C-terminal phosphatase motif. Moreover, the 

protein was not recovered in any of three reciprocal immunoprecipitations using tagged Tim 

subunits (Harsman et al., 2016). 

Whereas the ATOM46 and ATOM69, the receptor subunits of the ATOM complex, and the 

functional MIM complex analogue pATOM36 each have orthologues in E. gracilis, this is not 

case for the subunits of the bifunctional trypanosomal TIM complex, if we discount the 

universally conserved Tim22-homologue TbTim17. In fact E. gracilis has orthologues of both 

Tim23 and Tim22, respectively (M. Hammond and J. Lukes, University of South Bohemia in 

České Budějovice, personal communication). This demonstrates that the evolution of a 

single bifunctional TIM complex occurred independently of the ATOM-like OM translocase. 

There is ample bioinformatic evidence that orthologues of Tim23/Tim17 and Tim22, the 

core subunits of the TIM23 and TIM22 complex, respectively, are present in essentially all 

eukaryotes (Fukasawa et al., 2017; Pyrihova et al., 2018; Zarsky et al., 2016). Thus, two 
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distinct specialized IM protein translocases were likely already present in LECA. Having a 

single TIM complex only is therefore a derived trait. 

 

Inner membrane: a unique PAM module 

One function of the single TIM complex of trypanosomes is to translocate presequence-

containing substrates across the mitochondrial IM, before their presequences get processed 

by a conventional matrix protease (Desy et al., 2012; Smíd et al., 2008). It should therefore 

be associated with a PAM module. Indeed if we search the T. brucei genome we find ORFs 

homologous to mHsp70, Mge1, Pam18 and Pam16, all of which are subunits of the yeast 

PAM module (Fig. 1). The only yeast PAM subunit orthologue missing is the highly conserved 

Tim44 (Clements et al., 2009; Fukasawa et al., 2017), even though a protein having a very 

limited similarity to Tim44 is found. Furthermore, previous work has shown that, as might 

be expected, the single trypanosomal mHsp70 is required for mitochondrial protein import 

(Tschopp et al., 2011). However, while the trypanosomal J-domain containing Pam18 and 

Pam16 orthologues are required for normal growth, they are neither associated with, nor 

required for the formation of, the presequence intermediate indicating that the two 

proteins are not involved in mitochondrial protein import (von Känel et al., 2020). - 

Pulldown of the presequence intermediate did however recover another kinetoplastid-

specific J-domain containing protein, that was termed TbPam27. Ablation of this protein 

selectively inhibits the formation of the presequence intermediate and preferentially affects 

import of presequence-containing but not of mitochondrial carrier proteins. Moreover, as 

for Pam18 an intact J-domain was essential for TbPam27 function (von Känel et al., 2020). In 

summary, these results indicate that in trypanosomes the function of Pam18 was replaced 

by the unrelated J-domain protein TbPam27. In line with these results TbPam27 has a C-
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terminal transmembrane domain whereas Pam18 orthologues are C-terminally anchored in 

the membrane.  

We propose the following evolutionary scenario to explain the observed homologue 

replacement (von Känel et al., 2020). As explained above, LECA likely already had both a 

TIM23-like and a TIM22-like TIM complex (Fig. 5A). Kinetoplastids however have a single 

bifunctional TIM complex whose core subunit TbTim17 is an orthologue of yeast Tim22 (Fig. 

5D). This indicates that the trypanosomal TIM complex derives from a TIM22-type complex, 

which in addition to its primary function in mitochondrial carrier protein biogenesis has 

acquired the capability to translocate presequence-containing precursor protein. We 

propose that in the ancient pro-kinetoplastid the ancestor of TbPam27, a J-domain-

containing protein with a C-terminal transmembrane domain, that possibly arose by gene 

duplication, was recruited to the IM and interacted with the TIM22 complex (Fig. 5C). 

Initially this interaction was neutral. However, since the J-domain is known to bind to 

Hsp70s to regulate their ATPase activity, TbPam27 allowed binding of mHsp70 to the TIM22 

complex. With time, possibly by the addition of further subunits including the presequence 

pathway-specific TimRhom I and TimRhom II, this prepared the way for the evolution of a 

TIM22-type complex that could translocate presequence-containing substrates (Fig. 5C). 

This in turn made the TIM23 complex obsolete: its subunits were free the accumulate 

deleterious mutations and eventually disappeared. - However, why did Pam18 and Pam16 

not disappear? One possibility is that they acquired novel as yet unknown functions 

unrelated to mitochondrial protein import. Alternatively, and perhaps more interestingly, 

they may always have had a second function, that was masked by their well established role 

in mitochondrial protein import. The proposed scenario ties the evolution of the 

kinetoplastid-specific PAM subunit TbPam27 to the evolution of the single bifunctional 
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Tim22-like TIM complex of trypanosomes. Moreover, it can explain why trypanosomes lack 

the otherwise highly conserved Tim44 (Clements et al., 2009). In yeast Tim44 connects the 

PAM module to the TIM23 complex (Fig. 1). In the absence of a TIM23 complex it therefore 

becomes redundant. 

Having a single member only of the Tim17/22/23 protein family is not restricted to 

trypanosomes, but has also been found in a number of other unicellular eukaryotes 

including Giardia, Cryptosporidium, Microsporidium and Trimastix (Heinz et al., 2013; 

Pyrihova et al., 2018). All of these organisms have mitosomes, mitochondria-related 

organelles that have lost the organellar genome and the capability to perform oxidative 

phosphorylation (Makiuchi et al., 2014). It is unknow how the postulated single TIM 

complexes evolved in mitosomes of Microsporidium and Trimastix but it has been suggested 

that their core subunits are most closely related to yeast Tim22 indicating that, as in 

trypanosomes, they derive from the TIM22 complex. Interestingly, a different scenario 

applies for the evolution of the single TIM complex in Giardia, since its core subunit appears 

to be most similar to yeast Tim17 which together with Tim23 forms the protein-conducting 

channel of the TIM23 complex. In line with this, orthologues of Pam18, Pam16 as well as of 

Tim44 have been found in the Giardia mitosome (Martincova et al., 2015; Pyrihova et al., 

2018), suggesting it has a more conventional PAM module than trypanosomes. - It is 

important to keep in mind that in mitosomes the reduction of the IM protein translocases to 

a single complex coincides with the massive reduction of their proteomes (50-100 proteins 

in Giardia) (Heinz et al., 2013; Jedelsky et al., 2011)  when compared to bona fide 

mitochondria (1000-1500 proteins) (Pagliarini et al., 2008; Rao et al., 2017). This is 

different in trypanosomes, they have an organellar genome and a fully functional 

mitochondrion capable of oxidative phosphorylation whose mitochondrial proteome (ca. 
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1200 proteins) (Peikert et al., 2017) is even a bit bigger than the one of yeast (ca. 1000 

proteins) (Morgenstern et al., 2017; Vogtle et al., 2017). Thus, in T. brucei a reduced 

number of import substrates cannot explain why two distinct TIM complexes were reduced 

to a single one. 

 

Concluding remarks 

The comparative analysis of the mitochondrial protein import systems of yeast and 

trypanosomes helped to determine which import factors are universally conserved and 

therefore likely formed the primitive import systems present in LECA. In addition, it also 

revealed a surprising number of differences including at least three examples of convergent 

evolution over large phylogenetic distances. Furthermore, it showed that in some cases 

orthologues of yeast protein import factors, while still being present in trypanosomes, do 

not function in mitochondrial protein import. This illustrates the limit of bioinformatic 

analyses that cannot with certainty infer functions of homologous proteins. I’m convinced 

that we have just scratched the surface. Future studies of the trypanosomal protein import 

system should focus on assigning specific functions to the individual subunits of the 

trypanosomal ATOM and TIM complexes and compare them with their yeast counterparts. 

This will likely provide more insights into the very fundamental features of mitochondrial 

protein import that are “conserved” not due to common descent but due to the same 

selective forces. Moreover, future experimental studies of the mitochondrial protein import 

systems should be extended to representatives of other supergroups than opisthokonts and 

excavates. Extrapolating from our findings in trypanosomes this will without doubt uncover 

further lineage-specific features of mitochondrial protein import. Because protein import 

was one of the first mitochondria-specific trait to evolve, such studies will likely provide 
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further insight into the early evolutionary history of mitochondria and the origin of 

eukaryotes in general. 
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Figure legends  

 

Figure 1. Comparison of protein complexes and their subunits involved in mitochondrial 

protein import between S. cerevisiae and T. brucei.  

The subunits of each protein complex (name indicated in boxes) involved in mitochondrial 

protein import are outlined the identical colours. Complexes that have the same function in 

yeast and T. brucei are outlined with the same colour. Evolutionary conserved subunits 

between yeast and T. brucei are filled in orange. Subunits which have distinct evolutionary 

origins in yeast and T. brucei are filled with grey. Blue broken outlines indicate that 

TimRhom I and TimRhom II are specifically associated with the trypanosomal presequence 

translocase.    

 

Figure 2. Scenario for the convergent evolution of different OM protein import receptor 

pairs in the TOM complexes of different phylogenetic groups. 

(A), shows the situation in LECA whose ancestral TOM complex likely consisted of a Tom40-

like and a Tom22-like protein (shown in grey). (Tom7 which is also conserved in most 

eukaryotes and therefore likely was also present in the ancestral TOM complex is not 

shown). The cytosolic, presequence-binding domain of Tom22 probably evolved in 

Opisthokonts since it is absent in other phylogenetic groups. (B, C, D), illustrate the 

independent evolution of the three receptor pairs (indicated by different colours and 

shapes) in opisthokonts, Euglenozoa and the Archaeplastida. Except for the TPR motifs 

found in most but not all receptors they do not share sequence similarities and also have 

different topologies. The two receptors in each system appear to have preferences for 

either presequence-containing or hydrophobic import substrates, respectively. (E), The 
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broken arrow indicates that other phylogenetic groups may have yet different receptor 

pairs that have not been discovered yet. 

 

Figure 3. Scenario for convergent evolution of different systems for the biogenesis of a-

helically anchored OM proteins in different phylogenetic groups.  

(A), the situation in LECA is unknown. It could be that due to the simpler composition of its 

TOM complex it did not need a dedicated biogenesis factor for a-helically anchored OM 

proteins. (B), in fungi biogenesis of many a-helically anchored OM proteins is mediated by 

Mim1 and Mim2 (orange), which form the MIM complex. (C), pATOM36 (yellow) is a 

functional analogue of Mim1 and Mim2 in kinetoplastids. (It contains at least two, possibly 

more, transmembrane domains). (D), the broken arrows indicate that mammals and other 

phylogenetic groups, in which the biogenesis of a-helically anchored OM proteins is likely 

also protein-mediated, may require factors (blue) that are different to both Mim1/Mim2 

and pATOM36, respectively. 

 

Figure 4. Scenario for convergent evolution of different MIA systems in different 

phylogenetic groups. 

(A), shows the situation in LECA whose ancestral MIA system likely consisted of a Mia40-like 

and Erv1-like protein (shown in grey). (B), shows that opisthokonts and Archaeplastida have 

retained the ancestral system. (C), depicts the proposed situation in Kinetoplastids in which 

the lacking Mia40 might have been replaced by the thioredoxin-like protein Mic20 (yellow), 

a subunit of the non-canonical trypanosomal MICOS complex. (D), and (E) show two 

possibilities (indicated by broken arrows) of how the MIA systems may work in other 
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phylogenetic groups that lack Mia40, such as he SAR group. (D), Erv1 alone is sufficient to do 

the job. (E), another protein (blue) different from Mic20 might replace Mia40. 

 

Figure 5. Scenario for the evolution of a single TIM complex.  

(A), shows the situation in LECA which likely already had a TIM23-like complex, associated 

with a PAM module, as well as a TIM22-like complex, associated with small TIM 

complex(es). The ancestral TIM23 complex contained at least the Tim23-like and Tim17-like 

subunits, and the ancestral TIM22 complex at least the Tim22-like subunit. The ancestral 

PAM module included Hsp70-like, Pam16-like, Pam18-like and Tim44-like subunits. 

Ancestral subunits of the various complexes are depicted in grey throughout the figure. (B), 

The TIM and PAM complexes in opisthokonts and most other eukaryotes look essentially 

identical to their ancestral counterparts in LECA. (C), and (D) show the postulated 

evolutionary scenario for the kinetoplastid lineage that links the replacement of Pam18 by 

TbPam27 (yellow) to the transition from the ancestral state of two TIM complexes in LECA 

to a single bifunctional TIM22-like complex in extant kinetoplastids. (C) The J-domain 

containing integral membrane protein TbPam27 was recruited to the TIM22 complex in the 

ancient pro-Kinetoplastid. This was initially neutral but allowed mHsp70 to interact with the 

TIM22 complex via TbPam27. (D), subsequently, the TIM22 complex acquired to capability 

to translocate presequence-containing precursors, possibly by recruitment of other subunits 

such as TbRhom I and TbRhom II (blue) which are specifically associated with the 

presequence translocase. This rendered the TIM23 complex redundant and it eventually 

disappeared. Pam18 and Pam16, however, were retained because they either acquired a 

new as yet unknown function, or have an overlooked ancestral role. (E), mitosomes of 

Giardia and Cryptosporidium likely have a single TIM23-like complex organized around a 
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Tim17-like core subunit. Giardia appears to have orthologues of Pam16, Pam18, mHsp70 

and Tim44. (F), mitosomes of Microsporidium and Trimastix appear to have a single TIM 

complex organized around a Tim22-like protein.  
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