Mitochondria have their own genome, which reflects their bacterial ancestry. The size of mitochondrial DNA varies considerably (e.g. 17 kb in human and 367 kb in Arabidopsis thaliana), but generally encodes only a limited set of proteins (e.g. 13 in human and 32 in A. thaliana). Mitochondria, however, are complex structures consisting of up to 1000 different proteins. Import of nucleus-encoded proteins is therefore a process of fundamental importance for mitochondrial biogenesis. Nevertheless, synthesis of the limited set of mitochondrial-encoded proteins is essential for organism function. Translation requires tRNAs and a complete set of tRNAs, which, according to most textbooks, are encoded by the mitochondrial genome. However, as early as 1967, the import of nucleus-encoded tRNAs into the mitochondria was suggested to occur in Tetrahymena⁴. But it has taken 25 years for the process to be demonstrated directly using transgenic plants⁵. Today, it is well established that mitochondrial tRNA import is a process occurring in a number of evolutionary distinct organisms such as plants, the yeast Saccharomyces cerevisiae and many protozoans. In all organisms, for any given tRNA that is imported, most of the total tRNA synthesized in the nucleus remains in the cytosol and functions in cytosolic translation. The specificity and the extent to which individual tRNAs are imported, however, differs greatly between organisms and might reflect fundamental differences in the mechanisms underlying tRNA import. In this report we summarize the recent developments in the field of mitochondrial tRNA import and emphasize the basic problems that need to be solved.

Which organisms import tRNAs?

Mitochondrial import of a variable number of nucleus-encoded tRNAs is predicted to occur in different eukaryotic microorganisms (protozoa, fungi, algae), in some plants and in a few animals belonging to the Cnidaria and the Mollusca (Fig. 1). In most cases, evidence for tRNA import is based on the lack of a complete set of genes encoding tRNAs in the sequence of mitochondrial genomes. This prediction is fairly accurate in organisms that lack a significant number of essential mitochondrial tRNA genes. However, if the set of mitochondrial tRNA genes is nearly complete, the situation is more difficult because tRNA editing and variations in the codon sequence of mitochondrial genomes indicate that a large number of distinct RNase-P-like activity that is devoid of an RNA subunit (t)RNA import. Information gained from such studies might help to answer the enigmatic question of why tRNA import into mitochondria has been ‘invented’ during evolution.

What are the features of imported tRNAs?

All tRNAs that are imported into mitochondria are of the eukaryotic cytosolic type, meaning that the same gene codes for a tRNA involved in cytosolic as well as in mitochondrial translation. Some tRNAs, however, might acquire additional nucleotide modifications after import⁹,¹⁰. In quantitative terms, the imported tRNAs always represent only a small fraction (~5%) of the total cellular amount. This includes the

Mitochondrial tRNA import: are there distinct mechanisms?

Sequence information from an increasing number of complete mitochondrial genomes indicates that a large number of evolutionary distinct organisms import nucleus-encoded tRNAs. In the past five years, much research has been initiated on the features of imported tRNAs, the mechanism and the energetics of the process as well as on the components of the import machinery. In summary, these studies show that the import systems of different species exhibit some unique features, suggesting that more than one mechanism might exist to import tRNAs.

Andre Schneider is at the University of Fribourg, Institute of Zoology, Dept of Biology, Pérolles, CH-1700 Fribourg, Switzerland; and Laurence Maréchal-Drouard is at the Institut de Biologie Moléculaire des Plantes du CNRS, 12 rue du Général Zimmer, 67084 Strasbourg Cedex, France.

E-mails: andre.schneider@unifr.ch; laurence.drouard@ibmp-ulp.u-strasbg.fr
tRNA^{Trp} of Leishmania tarentolae, which in mitochondria, owing to reassignment of the stop codon to tryptophan in the organellar translation, has to decode UGA in addition to the normal tryptophan codon UGG. Suppression of UGA stop codons in the cytosol is expected to be harmful. In order to solve this problem, L. tarentolae imports the normal cytosolic tRNATrp, which is unable to decode the stop codon. Once inside the mitochondria, however, the CCA anticodon of the tRNATrp gets converted to UCA by RNA editing, allowing the tRNA to read both UGG and UGA codons. The number of imported tRNA species varies to a great extent, and overall this does not correlate with the phylogenetic position of the organism (Fig. 1). For example, S. cerevisiae imports a single tRNA, and a number of parasitic protozoa import all mitochondrial tRNAs. Interestingly, independent of the extent of tRNA import, one always finds cytosol-specific tRNAs even in systems that import all mitochondrial tRNAs. What are the distinguishing features of imported and purely cytosolic tRNAs? Despite the importance of this question, there are only two examples where the precise import determinants have been identified, the tRNAGln in Tetrahymena and the tRNALys in S. cerevisiae (Fig. 2).
Tetrahymena contains three homologous tRNA\textsubscript{Gln} molecules. Two of them with the anticodons UUA and CUU are cytosol specific and recognize the stop codon UCA, which has been reassigned to glutamine in the nucleus of Tetrahymena. The third tRNA\textsubscript{Gln} with the anticodon UUG recognizes the standard glutamine codons, however, and is found in both the cytosol and the mitochondria. In a quantitative in vivo analysis it was shown that the anticodon UUG of the imported tRNA\textsubscript{Gln} is both necessary and sufficient to induce import of any of the three tRNA\textsubscript{Gln} molecules14. S. cerevisiae contains two different nucleus-encoded tRNA\textsubscript{Gln}, only one of which is imported into mitochondria9. Quantitative in vivo and in vitro analysis identified the first base pair of the acceptor stem and the anticodon of the imported tRNA\textsubscript{Gln} in yeast as the main import determinants. It was further shown that import competence correlated with binding to a soluble import factor15,16 (see below). The identity of the import determinants in trypanosomatid (T. brucei, Leishmania) tRNA remains controversial. The D-stem loop appears to contribute to the signal as shown in an in vitro import study for tRNA\textsubscript{Gln} of L. tropica18 (Fig. 2). These results are supported by in vivo and in vitro experiments performed in L. tarentolae that show that swapping the D-loop stem from the exclusively cytosolic tRNA\textsubscript{Gln} with that from the imported tRNA\textsubscript{Gln} produced a partial mitochondrial localization of the resulting tRNA\textsubscript{Gln}. However, the converse experiment did not work – tRNA\textsubscript{Gln} remained cytosolic even when carrying the D-stem loop of the cytosolic tRNA\textsubscript{Gln} (Ref. 17). Furthermore, no clear sequence element within the D-stem loop could be found that is consistently present in imported but not in purely cytosolic tRNAs20. In addition, it was shown that even cytosolic tRNAs from yeast or human are imported into mitochondria when expressed in T. brucei21. It has also been claimed, that in T. brucei, actual import substrates are precursor tRNAs having long 5’-extension or dimeric tRNA transcripts22 (Fig. 2). Using primer extension and northern analysis, high-molecular-weight forms of tRNAs can be detected in mitochondrial RNA. However, some of these appear to be caused by artifactual circularization of tRNAs due to mitochondrial ligase activity23. Nevertheless, using RT-PCR a dicistronic precursor transcript consisting of a tRNA\textsubscript{Ser} and a tRNA\textsubscript{Leu} separated by a short intergenic sequence has recently been shown to exist in vivo22. Furthermore, in an in vitro import system, only the dicistronic precursor but not the derived mature tRNA\textsubscript{Leu} was imported24. However, in vivo studies in L. tarentolae and T. brucei have shown that tRNAs are imported into mitochondria independently of their genomic context17,21. In the latter case, even heterologous tRNAs flanked by non-trypanosomal sequences were imported. In vivo evidence for the role of precursors in tRNA import therefore remains to be demonstrated.

In summary, it is clear that more complete and quantitative studies are needed to identify the import determinants in plants and trypanosomatid tRNAs. Such studies are important as they offer the possibility to characterize protein factors interacting with these elements. Furthermore, it is unresolved why it is always only a fraction of a given tRNA that is imported.

How are tRNAs imported into mitochondria?

Although the role of the single imported tRNA\textsubscript{Gln} in S. cerevisiae is unclear as it cannot be aminoacylated inside mitochondria and as a mitochondria-encoded tRNA\textsubscript{Gln} exists, its import pathway has been elucidated in detail5. A combination of in vitro and in vivo studies showed that the charged tRNA is co-imported across the protein import pore using the mitochondrial precursor of lysyl-tRNA synthetase (preMSK) as a carrier, even though that protein cannot aminoacylate the tRNA it transports. Import of the tRNA – like protein import – requires internal ATP and the membrane potential. Binding of tRNA\textsubscript{Gln} to preMSK depends on specific regions in the tRNA (as discussed above) as well as on aminoacylation by the cytosolic lysyl-tRNA synthetase. Furthermore, in vitro import studies showed that, besides preMSK, at least one other as-yet-unidentified factor is required for import of the tRNA protein.
complex25. Numerous studies have established that proteins need to be unfolded during passage across the mitochondrial membranes26. It is therefore a challenge to explain how the interaction between unfolded preMSK and the imported tRNA35 can be maintained during transport. Although unfolding of the protein is essential for import, this might not apply for the tRNA since a nicked tRNA19 could still be imported into mitochondria as long as the two tRNA moieties were reannealed15. This is in agreement with earlier \textit{in vitro} studies using artificial protein–DNA chimeras that demonstrated that the protein-import channel is wide enough to accommodate double-stranded nucleic acids27.

Although preMSK is the crucial import factor in yeast, there is circumstantial evidence that aminoacyl-tRNA synthetases might not play the same role in other systems. Selective import of only some isoacceptors was observed in plants (for the tRNAGln isoacceptors)28 and in \textit{Tetrahymena} (for the tRNAGln isoacceptors)41. Furthermore, expression of plant mitochondrial alanyl-tRNA synthetase in yeast did not induce import of the coexpressed plant or the endogenous yeast tRNA36 (Ref. 29). Finally, in \textit{T. brucei}, a mutant tRNAGlu that cannot be charged could still be imported30. The described experiments argue against a crucial role for aminoacyl-tRNA synthetases in tRNA import – but they cannot definitively exclude it.

Recently, \textit{in vitro} tRNA import systems have been established for \textit{T. brucei}24,31 and two \textit{Leishmania} species18,32. One of \textit{T. brucei} system, although initially thought to import full-size tRNAs, was later shown to be competent only for the import of small RNA fragments31. Its physiological significance is therefore questionable and it will not be discussed further. All the other systems show some common features: pretreatment of mitochondria with protease abolished import, indicating the need for proteinaceous receptors on the surface of mitochondria. In \textit{L. tropica}, it was shown that antibodies against a protease-sensitive RNA-binding protein of 15 kDa inhibited import. Surprisingly, however, the putative import receptor was found both associated with mitochondria but also localized throughout the cell52. In all systems, import required external and probably internal ATP as well as one or both components of the electrochemical proton gradient18,24,31. Import substrates between \textit{Leishmania} and \textit{Trypanosoma} appear to be quite different. In \textit{Leishmania}, mature tRNAs were imported and a cytosol-specific tRNA was not18,32. In \textit{T. brucei}, on the other hand, only dimeric precursor tRNA was imported – but not its mature derivative34. Surprisingly, however, even though an RNase-P-like activity has been detected in mitochondrial extracts22, no processing of the imported transcript was observed. Furthermore, it remains to be demonstrated that the substrate tRNAs have indeed crossed both membranes and are localized in the matrix.

None of the assays in \textit{Leishmania} or \textit{T. brucei} requires the addition of cytosolic factors, which argues that the import mechanism is different from that in yeast. However, it cannot be excluded that contaminating cytosolic factors are present in the crude mitochondrial fractions used for the import assays. The identity of the 15-kDa putative tRNA import receptor in \textit{L. tropica} is unclear, so it could in principle be a component of the protein-import machinery. Furthermore, the established energy requirement for tRNA import does not allow us to distinguish between yeast-like co-import or any other mechanism. In the light of the evolutionary distribution of tRNA import (Fig. 1), it is unlikely that only one mechanism exists. Identification of import factors in the different organisms should be a priority of future research as it will allow this question to be definitively settled. It would be especially interesting in this regard to learn more about the plant system, the import mechanism of which has remained obscure owing to the lack of an \textit{in vitro} system.

Practical applications of mitochondrial tRNA import

Mitochondrial tRNA import might have some exciting practical applications. At present, only very few systems are amenable to direct mitochondrial transformation. tRNA import offers an alternative tool to study mitochondrial gene expression since it might allow import of synthetic sequences (e.g. antisense RNAs or ribozymes) that would potentially interfere with intramitochondrial functions (e.g. translation or RNA editing). Indeed, it was shown in \textit{L. tarentolae} that a splicing-deficient tRNA79 can be used to import synthetic introns of up to 40 nucleotides in length34. More recently, an elegant study in \textit{S. cerevisiae} showed that it is possible to complement a nonsense mutation in the mitochondrial COX2 gene by nuclear transformation of a suppressor variant of the imported tRNA35 (Ref. 35). Even though the imported tRNA35 cannot be charged inside mitochondria, it is imported in its aminoacylated form and therefore might still participate in mitochondrial translation. Furthermore, the experiment demonstrates for the first time that tRNA import can be used to cure respiratory defects caused by mutations in the mitochondrial DNA. This is of great medical interest since a number of human mitochondrial cytopathies (e.g. MELAS, mitochondrial myopathy encephalopathy with acid lactosis and stroke-like episodes; MERF, myoclonic epilepsy and ragged-red fibres syndrome) are caused by point mutations in mitochondria-encoded tRNAs36. Many of these diseases might theoretically be treated by nuclear transfection with the corresponding wild-type tRNA gene – but only if the tRNA can be imported into mitochondria. Although human mitochondria do not normally import tRNAs, a recent study showed that it is possible to import the yeast tRNA35 into isolated human mitochondria as long as soluble yeast import-directing factors are present35. It should therefore in principle be possible to transplant the tRNA-import system of yeast into human cells. Finally, tRNA import is extensive in trypanosomatids and apicomplexans, many of which are important clinical pathogens. The hosts of these parasites, however, do not import tRNAs. The process offers therefore a novel potential target for a chemotherapeutic attack on these organisms.
Future research on the various tRNA import systems will therefore not only reveal novel insights into an as yet poorly understood basic biological process but may also have impact on the treatment of clinically important human diseases.

References

Acknowledgements
We are grateful to Adrian Steit for comments on the manuscript. A.S. was supported by grants 31–05625.99 and 4037–5514 from the Swiss National Foundation and by a fellowship of the "Prof. Dr Max Cloetta" Foundation. L.M-D. was supported by funds from the Centre National de la Recherche Scientifique and from the Université Louis Pasteur.