SHORT COMMUNICATION

Christoph E. Nabholz · Dave Speijer · André Schneider

Chloramphenicol-sensitive mitochondrial translation in *Trypanosoma brucei*

Received: 30 January 1999 / Accepted: 17 February 1999

Abstract We developed an in organello system to label newly synthesized mitochondrially encoded proteins of *Trypanosoma brucei*. Highly purified mitochondria, prepared under isotonic conditions, were incubated with radioactive methionine and cysteine in a suitable translation buffer. Analysis of mitochondrial extracts on TRIS-Tricine gels revealed a subset of labeled, NP-40-insoluble proteins. The labeling of these proteins was resistant to the cytosol-specific translation inhibitor cycloheximide. The proteins, however, were not labeled in the presence of chloramphenicol or erythromycin, inhibitors of prokaryotic type translation, or puromycin, a general translation inhibitor. These results indicate that isotonically isolated mitochondria of *T. brucei* are capable of protein synthesis.

Introduction

Mitochondrial translation in trypanosomatids is of great interest for at least three reasons. First, many RNAs that are synthesized in trypanosomatid mitochondria undergo RNA editing by uridylicate insertions and deletions to become functional mRNAs. In recent years, much has been learned concerning the mechanism of RNA editing (Sollner-Webb 1996). However, nothing is known about one important aspect of the problem, whether and, if so, how fully edited mRNAs are translated within mitochondria. Second, mitochondrial ribosomes of trypanosomatids contain the shortest known rRNAs among all eukaryotes and may therefore serve as a system for investigation of the minimal requirements for a protein synthesis machinery (Benne and Sloof 1987). Third, unlike mitochondrial translation in most other species, mitochondrial protein synthesis in trypanosomatids relies exclusively on tRNAs that are imported from the cytosol (Schneider 1994). The problem of mitochondrial translation in trypanosomatids has proved to be difficult to analyze. Attempts to purify mitochondrial ribosomes have been only partially successful (Shu and Göringer 1998). Cytochrome c oxidase from *Crithidia fasciculata* has been purified. However, all the putative mitochondrially encoded subunits were refractory to protein sequencing (Speijer et al. 1996; Brek et al. 1997). The best evidence for mitochondrial translation was found in a number of studies using antibodies raised against synthetic peptides of putative mitochondrially encoded proteins that detected signals of the expected molecular weights in the mitochondrial fraction (Shaw et al. 1989; Beattie and Howton 1996). In addition, in organello labeling experiments in *C. fasciculata* identified a number of putative mitochondrially encoded proteins. However, no information was provided as to whether the observed translation was sensitive to inhibition by prokaryotic type translation inhibitors (Tittawella 1998). In the present study we used an in organello labeling approach for direct demonstration of mitochondrial translation in *Trypanosoma brucei*.

Material and methods

Cells

Procyclic wild-type and transformed *Trypanosoma brucei*, stock 427, were grown in SDM-79 medium supplemented with 5% fetal bovine serum.

In organello translation

Mitochondria were isolated using sterilized buffers and equipment as described elsewhere (Hauser et al. 1996), except that a low-speed
spin (300 g) was routinely performed before loading of the Ny
codenz gradients. The absence of intact T. brucei cells and bacterial
contamination in isolated mitochondrial preparations was con-
ﬁrmed by light microscopy. In organello translations were per-
formed using 400 µg of isolated mitochondria each in 100 µl of
translation buffer [20 mM TRIS-HCl (pH 7.4), 30 mM KH2PO4,
0.6 M sorbitol, 5 mM succinate, 50 mM KCl, 20 mM MgSO4,
12 mM creatine phosphate, creatine phosphokinase at 0.16 mg/ml,
4 mM ATP, 0.5 mM GTP, 5 mM NADH, fatty-acid-free bovine
serum albumin at 2.5 mg/ml, and 1 mM of all biological amino
acids except methionine and cysteine] containing 1 µM (approxi-
mately 150 µCi) of a mixture of 35S-labeled methionine and cyste-
eine (Pro-mix, Amersham, Switzerland). The reactions were
incubated for 90 min at 25 °C, and mitochondria were reisolated
by centrifugation for 3 min at 5,200 g at 4 °C. The resulting pellets
were extracted with 100 µl of 50 mM potassium phosphate (pH
7.5) containing 0.5% NP-40. Subsequently, the samples were cen-
trifuged at 15,000 g for 15 min, and the pellet was solubilized under
constant mixing for 2 h at 37 °C in 50 µl of 0.28 M TRIS-HCl (pH
6.8), 2.8% sodium dodecyl sulfate, 5% (v/v) glycerol, and 5% (v/v)
β-mercaptoethanol. All reactions were analyzed on TRIS-Tricine
gels (Schägger and von Jagow 1987), which were ﬁrst stained with
Coomassie brilliant blue to check for equal loading and then pro-
cessed for ﬂuorography.

In organello translation reactions were incubated in the presence
or absence of cycloheximide at 100 µg/ml, at water-soluble chlor-
amphenicol 50 µg/ml (Sigma, Switzerland), erythromycin at
100 µg/ml, 1 mM puromycin, or a mixture of 2 µM valinomycin
and 50 µM carbonyl cyanide triflamethoxyphenylhydrazone
(FCCP).

Results and discussion

Mitochondria isolated by conventional hypotonic puri-
fication procedures (Braly et al. 1974; Harris et al. 1990)
are not capable of synthesizing proteins in an in organel-
ello system (data not shown). We therefore used mito-
cholria isolated under isotonic conditions using nitrogen
cavitation followed by Nycodenz gradients. Mitochondria isolated by this method had previously
been shown to exhibit a membrane potential and to be
capable of import of mitochondrial precursor proteins
(Hauser et al. 1996). Mitochondria were incubated un-
der suitable buffer conditions with radioactive methio-
nine and cysteine for 60 min at 27 °C. After incubation,
mitochondria were extracted with 0.5% NP-40 and the
labeled proteins were analyzed on TRIS-Tricine gels
optimized to separate hydrophobic proteins (Schägger
and von Jagow 1987). The respiratory complexes, which
include practically all mitochondrially encoded proteins,
are relatively insoluble in 0.5% NP-40 and should therefore
be enriched in the pellet (Speijer et al. 1996).

The immunoblot depicted in Fig. 1 shows that the
ATPase complex is indeed enriched in the 0.5% NP-40
pellet by a factor of 3-5. During the in organello assay,
radioactive methionine and cysteine is incorporated into
a subset of distinct proteins found in the NP-40 pellet.
Labeling of the proteins is not altered in the presence of
cycloheximide, an inhibitor of translation in the eu-
karyotic cytosol. This indicates that the observed label-
ing pattern was not due to cytosolic contamination or to
a small residual number of intact cells that might have
remained in the mitochondrial fraction. However, if
puromycin, a tRNA analogue that blocks prokaryotic as
well as eukaryotic translation, is added, no labeled
protein is found.

Most importantly, incorporation of radioactivity into
respiratory complexes was sensitive to erythromycin and
chloramphenicol, which have been shown in other sys-
tems to inhibit mitochondrial and prokaryotic transla-
tion only. Antibiotic inhibition studies are the most
powerful tools for the operational deﬁnition of mito-
cholria translation. However, previous studies have
led to contradictory results and have been questioned
because the permeability of the trypanosomatid cell
membrane has not been addressed (Laub-Kupersztajn
and Thirion 1974; Kleisen and Borst 1975; Spithill et
al. 1981). These problems can be avoided by the use of
permeabilized cells or, as in the present study, by the use
of isolated organelles. Our results fully agree with the
study of Shu and Göringer (1998) and extend it further,
showing that radioactivity is indeed incorporated into
proteins. In summary, the two studies ﬁrmly establish
that mitochondrial translation in trypanosomes, as in all
other eukaryotes, is sensitive to chloramphenicol.

Surprisingly, chloramphenicol sensitivity has not been
tested in a recent study on in organello translation in
C. fasciculata (Tittawella 1998). A comparison of our
data with these experiments is therefore problematic;
nevertheless, an apparently similar labeling pattern was
obtained. In our study, approximately 10–12 putative
mitochondrially encoded proteins were detected. The
apparent molecular weights of the main erythromycin-
and chloramphenicol-sensitive labeled proteins (aster-
isks in Figs. 1, 2) correspond to 17.8, 22.9, and 27 kDa,
respectively, which lie within the range of several proteins predicted to be encoded in the mitochondrion of *T. brucei*. However, the present results do not allow their identification.

Finally, *in organello* translation in trypanosomes and in the yeast *Saccharomyces cerevisiae* was compared (Fig. 3). As expected, similar numbers of labeled proteins were found, which did not have exactly corresponding sizes in the two organisms. In both species, mitochondrial translation was sensitive to erythromycin. Finally, if the membrane potential was dissipated by valinomycin and FCCP, mitochondrial translation was reduced in the yeast and abolished in *T. brucei*. Transport of amino acids across the inner membrane requires a membrane potential. It is therefore likely that the reduction in translation observed in the absence of a membrane potential was an indirect effect due to reduced uptake of amino acids. Nevertheless, such an effect is expected to be specific for mitochondria.

In summary, our results present for the first time direct evidence for translation in isolated mitochondria of *T. brucei*. The observed mitochondrial protein synthesis shows the expected properties of being resistant to translation inhibitors of the cytosolic type but being sensitive to prokaryotic type translation inhibitors. Future work will focus on the identification of the mitochondrially synthesized gene products.

Fig. 2 Mitochondrial translation in *T. brucei* is sensitive to prokaryotic type translation inhibitors. NP-40 pellets of *in organello* labeling reactions performed in the absence or presence of cycloheximide, chloramphenicol, erythromycin, and puromycin were analyzed on TRIS-Tricine gel. The positions of molecular-weight markers are indicated on the right. The three main translation products in mitochondria are indicated by asterisks.

Fig. 3 Mitochondrial translation in *S. cerevisiae* and *T. brucei* are comparable. *Left panel:* 20 µg of isolated yeast mitochondria was subjected to *in organello* labeling in the presence of cycloheximide, a mixture of valinomycin and FCCP, or erythromycin and then analyzed on the same TRIS-Tricine gel. *Right panel:* same conditions described above except that 200 µg of isolated trypanosomal mitochondria was used in each labeling reaction and the samples were subjected to 0.5% NP-40 extraction prior to the analysis. The three main translation products of *T. brucei* mitochondria are indicated by asterisks.

Acknowledgements We thank Elke Horn for her excellent technical assistance, Rob Benne for his helpful discussions, and Roland Pach for reading the manuscript. This work was supported by grant 31-46628.96 from the Swiss National Foundation and by a fellowship awarded by the Prof. Dr. Max Cloëtta Foundation to A. S.

References

Kleisen CM, Borst P (1975) Are 50% of all cellular proteins synthesized on mitochondrial ribosomes in *Crithidia luciliae*? Biochim Biophys Acta 390: 78–81

Schägger H, Jagow G von (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166: 368–379

Shaw JM, Campbell D, Simpson L (1989) Internal frameshifts within the mitochondrial genes for cytochrome oxidase subunit II and maxicircle unidentified reading frame 3 of *Leishmania tarentolae* are corrected by RNA editing: evidence for translation of the edited cytochrome oxidase subunit II mRNA. Proc Natl Acad Sci 86: 6220–6224

